
- 2 Nommer dans un triangle rectangle
- a. Soit un triangle ABC rectangle en A.
- L'hypoténuse est
- · Le côté adjacent à l'angle ABC est

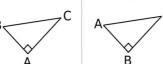
- Le côté adjacent à l'angle \widehat{ACB} est
- **b.** Soit DEF un triangle rectangle en E.
- · L'hypoténuse est
- · Le côté opposé à l'angle **EDF** est

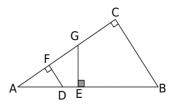
- Le côté opposé à l'angle EFD est
- c. GHI est un triangle rectangle en H.
- Le côté adjacent à l'angle HIG est
- Le côté opposé à l'angle HGI est
- 7 Écrire les trois rapports trigonométriques TUV est un triangle rectangle en V.
- · L'hypoténuse est

- Le côté adjacent à l'angle TUV est
- Le côté opposé à l'angle TUV est

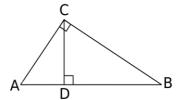
Donc
$$\cos \widehat{TUV} = \frac{\dots}{\dots}$$
, $\sin \widehat{TUV} = \frac{\dots}{\dots}$ et $\tan \widehat{TUV} = \frac{\dots}{\dots}$

10 Dans quel triangle?


Triangle n°1



Triangle n°3


	Triangle n°
$\cos \widehat{ABC} = \frac{AB}{BC}$	
$\tan \widehat{ABC} = \frac{AC}{BC}$	
$\sin \widehat{BAC} = \frac{BC}{AC}$	
$\tan \widehat{BAC} = \frac{BC}{AC}$	
$\sin \widehat{ACB} = \frac{AB}{AC}$	

3 Avec plusieurs triangles rectangles

- a. L'hypoténuse du triangle rectangle ABC est
- **b.** L'hypoténuse du triangle rectangle AEG est
- c. Dans le triangle rectangle EGA, le côté opposé à l'angle EGA est
- d. Dans le triangle rectangle FAD, le côté opposé à l'angle $\widehat{\mathsf{ADF}}$ est
- e. Dans le triangle rectangle AEG, le côté adjacent à l'angle ÂGE est
- f. Dans le triangle rectangle ADF, le côté adjacent à l'angle DAF est
- g. Dans le triangle rectangle BEG, le côté adjacent à l'angle EGB est

8 Avec une hauteur

En utilisant la figure ci-contre, complète les phrases ci-dessous.

a. Dans le triangle ABC rectangle en C, on a :

$$\cos \widehat{\mathsf{BAC}} = \frac{\dots}{}$$

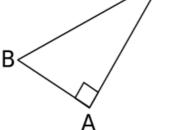
b. Dans le triangle ABC rectangle en C, on a :

$$\cos \widehat{ABC} = \frac{\dots}{\dots}$$

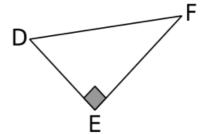
c. Dans le triangle BCD rectangle en D, on a :

$$sin \widehat{BCD} = \frac{.....}{...}$$

d. Dans le triangle BCD rectangle en D, on a :

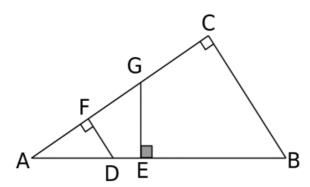

tan
$$\widehat{\mathsf{DBC}} = \frac{\dots}{\mathsf{DBC}}$$
.

e. Dans le triangle ADC rectangle en D, on a :


$$\sin \widehat{ACD} = \frac{\dots}{\dots}$$

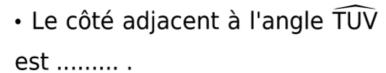
2 Nommer dans un triangle rectangle

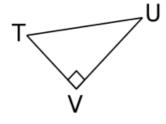
- a. Soit un triangle ABC rectangle en A.
- · L'hypoténuse est
- Le côté adjacent à l'angle ÂBC est



- Le côté adjacent à l'angle ÂCB est
- **b.** Soit DEF un triangle rectangle en E.
- L'hypoténuse est
- Le côté opposé à l'angle ÊDF est

- Le côté opposé à l'angle EFD est
- c. GHI est un triangle rectangle en H.
- Le côté adjacent à l'angle HIG est
- Le côté opposé à l'angle HGI est

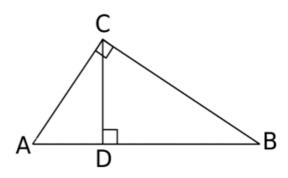

3 Avec plusieurs triangles rectangles



- a. L'hypoténuse du triangle rectangle ABC est
- **b.** L'hypoténuse du triangle rectangle AEG est
- **c.** Dans le triangle rectangle EGA, le côté opposé à l'angle $\widehat{\text{EGA}}$ est
- **d.** Dans le triangle rectangle FAD, le côté opposé à l'angle $\widehat{\mathsf{ADF}}$ est
- **e.** Dans le triangle rectangle AEG, le côté adjacent à l'angle $\widehat{\mathsf{AGE}}$ est
- **f.** Dans le triangle rectangle ADF, le côté adjacent à l'angle DAF est
- **g.** Dans le triangle rectangle BEG, le côté adjacent à l'angle $\widehat{\text{EGB}}$ est

7 Écrire les trois rapports trigonométriques TUV est un triangle rectangle en V.

· L'hypoténuse est


• Le côté opposé à l'angle TUV est

Donc
$$\cos \widehat{TUV} = \frac{\dots}{\dots}$$
, $\sin \widehat{TUV} = \frac{\dots}{\dots}$
et $\tan \widehat{TUV} = \frac{\dots}{\dots}$

.

8 Avec une hauteur

En utilisant la figure ci-contre, complète les phrases ci-dessous.

a. Dans le triangle ABC rectangle en C, on a :

$$\cos \widehat{BAC} = \frac{\dots}{\dots}$$

b. Dans le triangle ABC rectangle en C, on a :

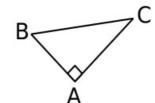
$$\cos \widehat{ABC} = \frac{\dots}{\dots}$$

c. Dans le triangle BCD rectangle en D, on a :

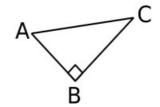
$$sin \widehat{BCD} = \frac{.....}{....}$$

d. Dans le triangle BCD rectangle en D, on a :

$$tan \widehat{DBC} = \frac{\dots}{\dots}$$


e. Dans le triangle ADC rectangle en D, on a :

$$\sin \widehat{ACD} = \frac{\dots}{\dots}$$


10 Dans quel triangle ?

Triangle n°1

Triangle n°2

Triangle n°3

	Triangle n°
$\cos \widehat{ABC} = \frac{AB}{BC}$	
$\tan \widehat{ABC} = \frac{AC}{BC}$	
$\sin \widehat{BAC} = \frac{BC}{AC}$	
$\tan \widehat{BAC} = \frac{BC}{AC}$	
$\sin \widehat{ACB} = \frac{AB}{AC}$	